首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   1篇
大气科学   12篇
地球物理   21篇
地质学   30篇
海洋学   21篇
天文学   3篇
综合类   1篇
自然地理   7篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   14篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
31.
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino acids, lipids, and pigments (along with ballast minerals) [Lee, C., Armstrong, R.A., Wakeham, S.G., Peterson, M.L., Miquel, J.C., Cochran, J.K., Fowler, S.W., Hirschberg, D., Beck, A. Xue, J., 2009b. Particulate matter fluxes in time series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Research II, this volume [doi:10.1016/j.dsr2.2008.12.003]]. The goal was to identify how organic chemical compositions of sinking particles varied as a function of their in-situ settling velocity. The TS record was used to define the biogeochemical character and temporal pattern in flux during the period of SV trap deployment. Temporal variations in organic and mineral compositions are consistent with particle biogeochemistry being driven by the seasonal succession of phytoplankton. Spring diatom bloom conditions led to a high flux of rapidly sinking aggregates and zooplankton fecal matter; summer oligotrophy followed and was characterized by a higher proportion of slowly sinking phytoplankton cells. Bacterial degradation is particularly important during the low-flux summer period. Settling velocity traps show that a large proportion of particulate organic matter sinks at 200–500 m d−1. Organic compositions of this fast-sinking material mirrors that of fecal pellets and aggregated material that sinks as the spring bloom terminates. More-slowly sinking OM bears a stronger signature of bacterial degradation than do the faster-sinking particles. The observation that compositions of SV-sorted fractions are different implies that the particle field is compositionally heterogeneous over a range of settling velocities. Thus physical and biological exchange between fast-sinking and slow-sinking particles as they pass down the water column must be incomplete.  相似文献   
32.
This paper investigates the impact of soil moisture-temperature feedback during heatwaves occurring over France between 1989 and 2008. Two simulations of the weather research and forecasting regional model have been analysed, with two different land-surface models. One resolves the hydrology and is able to simulate summer dryness, while the other prescribes constant and high soil moisture and hence no soil moisture deficit. The sensitivity analysis conducted for all heatwave episodes highlights different soil moisture-temperature responses (1) over low-elevation plains, (2) over mountains and (3) over coastal regions. In the plains, soil moisture deficit induces less evapotranspiration and higher sensible heat flux. This has the effect of heating the planetary boundary layer and at the same time of creating a general condition of higher convective instability and a slight increase of shallow cloud cover. A positive feedback is created which increases the temperature anomaly during the heatwaves. In mountainous regions, enhanced heat fluxes over dry soil reinforce upslope winds producing strong vertical motion over the mountain slope, first triggered by thermal convection. This, jointly to the instability conditions, favors convection triggering and produces clouds and precipitation over the mountains, reducing the temperature anomaly. In coastal regions, dry soil enhances land/sea thermal contrast, strengthening sea-breeze circulation and moist cold marine air advection. This damps the magnitude of the heatwave temperature anomaly in coastal areas, expecially near the Mediterranean coast. Hence, along with heating in the plains, soil dryness can also have a significant cooling effect over mountains and coastal regions due to meso-scale circulations.  相似文献   
33.
The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200 m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30–40 years. Pre-invaded soils have an approximately 5 cm thick litter layer, thin (~5 cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals’ capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.  相似文献   
34.
Submersed aquatic vegetation (SAV) have been a prominent feature on the Susquehanna Flats, the shallow, subaqueous delta of the Susquehanna River, Maryland. SAV were absent from the Flats between 1972 and 2000, but have since recovered. While it is well established that SAV can improve water quality by promoting sediment and nutrient retention, it is not well understood how SAV on the Flats modulate sediment input from the Susquehanna River into the Upper Chesapeake Bay over different timescales. This study evaluates sedimentation on the Flats over seasonal to decadal timescales, using naturally occurring radioisotopes (7Be, 210Pb) within the context of SAV biomass and Flats geomorphology. Results indicate that sedimentation on the Flats is both spatially and temporally variable. Although this variability cannot be explained by relationships with grain size and SAV biomass, river discharge, sediment supply, and geometry over the SAV bed likely control sedimentation in this system. Decadal-scale sedimentation is influenced by both flood events and changes in SAV biomass abundance. Average annual sediment accumulation was higher when SAV were present than when SAV were absent. SAV bed area was strongly correlated with average annual accumulation rate. These results suggest that a positive feedback between SAV abundance and accumulation rate exists; however, sediment supply and transport pathways are also important factors.  相似文献   
35.
There is a growing interest in the rescue and reuse of data from past studies (so-called legacy data). Data loss is alarming, especially where natural archives are under threat, such as peat deposits. Here we develop a workflow for reuse of legacy radiocarbon dates in peatland studies, including a rigorous quality assessment that can be tailored to specific research questions and study regions. A penalty is assigned to each date based on criteria that consider taphonomic quality (i.e., sample provenance) and dating quality (i.e., sample material and method used). The weights of quality criteria may be adjusted based on the research focus, and resulting confidence levels may be used in further analyses to ensure robustness of conclusions. We apply the proposed approach to a case study of a (former) peat landscape in the Netherlands, aiming to reconstruct the timing of peat initiation spatially. Our search yielded 313 radiocarbon dates from the 1950s to 2019. Based on the quality assessment, the dates—of highly diverse quality—were assigned to four confidence levels. Results indicate that peat initiation for the study area first peaked in the Late Glacial (~14,000 cal years BP), dropped during the Boreal (~9,500 cal years BP) and showed a second peak in the Subboreal (~4,500 cal years BP). We tentatively conclude that the earliest peak was mostly driven by climate (Bølling–Allerød interstadial), whereas the second was probably the result of Holocene sea level rise and related groundwater level rise in combination with climatic conditions (hypsithermal). Our study highlights the potential of legacy data for palaeogeographic reconstructions, as it is cost-efficient and provides access to information no longer available in the field. However, data retrieval may be challenging, and reuse of data requires that basic information on location, elevation, stratigraphy, sample and laboratory analysis are documented irrespective of the original research aims.  相似文献   
36.
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chloropigments, and amino acids clearly shows the seasonal influence and effect of extreme meteorological events on the composition of collected particles. The sampling period was divided into three “scenarios”. The first corresponded to a large easterly storm and flood of the Rhone river during stratified water column conditions; the composition of material collected during this event was influenced by increased transfer of riverine and coastal particulate matter, with a lower Corg content. During the second “fall-winter” scenario, northern and northwestern winds blowing over the shelf caused cooling and homogenization of the shelf water column; particles collected at this time reflected the homogeneous source of particulate matter transported through canyons; particles sitting in the vicinity of canyon heads are most likely swept downslope by the general south-westward circulation. Organic tracers indicate a degraded origin for organic matter transported during this period. A third “spring” scenario corresponded to northern winds alternating with eastward windstorms that triggered and/or enhanced the cascading of dense waters accumulated on the bottom of the shelf due to previous cooling. These conditions occurred in conjunction with increased phytoplankton productivity in shelf surface waters. Organic matter advected mainly by dense shelf water cascading was fresher due to the transport of newly produced particles and a variable terrestrial fraction; this fraction depended on the proportion of resuspended material accumulated during previous high discharge periods that was involved in each transport pulse. The tight link shown between meteorological conditions and organic matter transport is important for continental margin geochemical studies as future changes in climatic conditions may lead to dramatic changes in carbon sequestration capability and in the ecosystems of deep margin environments.  相似文献   
37.
38.
The Proterozoic terrane of the Black Hills, South Dakota, includes the composite Harney Peak leucogranite and associated pegmatites that were emplaced into metamorphosed pelites and graywackes. Available dates indicate that granite generation post-dated regional metamorphism and deformation that have been attributed to collision of the Wyoming and Superior cratons at 1760 Ma. Previous radiogenic and stable isotope work indicates that the exposed metasedimentary rocks are equivalent to sources of the leucogranites. In this study, whole rock and mineral compositions of the metasedimentary rocks were used to calculate the likely average residue mineralogies and melt fractions that would be generated by muscovite dehydration melting of the rocks. These were then used to model observed trace element compositions of the granites using published mineral/melt distribution coefficients. Model trace element melt compositions using pelitic and graywacke protoliths yield similar results.

The models reproduce well the observed depletion of transition metals and Ba in the granites relative to metasedimentary protoliths. The depletion is due mainly to high proportion of biotite with variable amounts of K-feldspar in the model residue. Sr is also depleted in the granites compared to source rocks, but to a lesser relative extent than Ba. This is because of the low biotite/melt distribution coefficient for Sr and because high proportion of plagioclase in the residue is compensated by high Sr concentrations in protoliths. Rubidium, Cs and Ta behaved as slightly compatible to incompatible elements, and therefore, were not strongly fractionated during melting. Of the considered elements, only B appears to have been highly incompatible relative to residue during melting. The protoliths had sufficient B to allow tourmaline crystallization in those parts of the Harney Peak Granite in which Ti concentration was sufficiently low not to enhance crystallization of biotite.

The reproducibility of observed trace element concentrations in the Harney Peak Granite by the models supports the often made proposition that metapelites and metagraywackes are common sources for leucogranites. This argues against mass input from the mantle into metagraywacke and metapelitic crustal sources or melting of amphibolites to generate the post-collisional Harney Peak and other similar peraluminous granite suites.  相似文献   

39.
40.
Particulate organic carbon (POC) concentrations measured in bottles are often higher than those measured by in situ pumps when samples are taken concurrently. In previous work, we suggested that differential collection of zooplankton might explain this systematic discrepancy in POC between these small volume (bottle) and large volume (in situ pump) techniques. We have now further quantified the carbon contributed by zooplankton collected in the >70-μm particulate fractions from both bottles and pumps at sites in the Mediterranean Sea and Long Island Sound. Our results show that zooplankton abundance and lipid concentrations from zooplankton are one order of magnitude higher in the bottles than in the pumps, supporting the idea that part of the pump–bottle difference is due to collection of more zooplankton by the bottles. Particle washout off the 70-μm mesh used in the in situ pump may cause loss of some particles as well. However, zooplankton in the >70-μm fraction from the bottles contributed only about 1–2 μM POC, which cannot explain the up to 20 μM POC differences observed in this study. Thus, the mechanisms leading to such a large POC difference are still unclear and need to be further investigated. POC concentrations measured using microquartz filters were similar to those using glass fiber filters, suggesting that filter types cannot explain the higher POC observed in bottles, where glass fiber filters are normally used. Furthermore, we investigated several different pump inlet designs to determine how these might affect the ability of pumps to collect and retain large (>70 μm) particles, including zooplankton. The comparison among different pump inlets suggests that inlet design affects the efficiency and retention of large particles and that a sealed filter holder with a narrow right-angle tubular opening is the most efficient at catching/retaining zooplankton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号